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1. Introduction
This document provides technical information about the architecture and processing of data in the Eclipse
Software, along with a description of the algorithms and calculations used in Eclipse.

1.1 Relevant Documents
1. Eclipse LB User’s Manual.
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2. Plateau
The optimum operating voltage is determined from the plateau curve as the leftmost point that satisfies the
following two conditions:

1. The “slope” (in % per 100 volts - as defined below), %M,  is less than 2.5% (per 100 volts).
2. The number of counts observed for this point is greater than 2500 (for 2% counting statistics).

For a set of N data points (xi, yi), the coefficients of the best fit straight line (y=mx+b) by the method of least
squares are given by
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In the case of the plateau determination, the data consists of a set of points (Vj, Cj), where Cj is the number of
counts observed during a given counting interval when a voltage of Vj is applied to the detector. The slope (in
counts per volt) at the ith point, mi, is defined as the slope of the straight line (C=mV+b) determined from the
5 points about the ith point (i.e., from i-2 to i+2) by the method of least squares.
By analogy to the general case above, we write:
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The “percent slope” at the ith point, %mi, can be written as
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In summary, the operating voltage is selected as the leftmost point (lowest i) for which
1. %Mi < 2.5%
2. Ci > 2500.
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3. Background
Backgrounds may be determined for each of the three count modes:

1. Alpha only
2. Simultaneous
3. Alpha then Beta

Backgrounds are always determined as a gross count, and may be determined from a single measurement or a
set of measurements; e.g., 1 – 10 minute count or 10 – 1 minute counts.

3.1 Alpha Only Mode
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=iC the number of counts obtained during the ith count.

=T the (common) count time of each of the N counts.
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3.2 Simultaneous Mode

Rates
For :1≥N
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3.3 Alpha Then Beta Mode
Since the ATB mode matches oneα only count (i) to a corresponding ][ βα +  count (i), and the count

times are the same, we may write:

TTT ii ==+ __][ αβα

Alpha Background in the ATB Mode
The Alpha Background Rate is given by
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=α_BR theα background count rate for the α ONLY mode of the ATB count mode.

=iC _α the number of α counts obtained during the ith count.

=T the (common) count time of each of the N counts.

=iBR __α the α background count rate determined during the ith count.

=
α

σ
_BR the uncertainty in the α (system) BACKGROUND count rate for theα ONLY mode of

the ATB count mode.
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Beta Background in the ATB Mode
The Beta Background Rate is given by

For 1≥N

[ ] αβααβαβ _]_[
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=β_BR the derivedβ BACKGROUND count rate for the ATB count mode.

=+ iBR _]_[ βα the GROSS ( βα + ) count rate obtained in the ( βα + ) mode during the ith count.

=iBR __α the GROSS (α ) count rate obtained in the α ONLY mode during the ith count.

=+ ]_[ βαBR =⋅∑
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+
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i
iBR

N 1
_]_[

1
βα  the ( βα + ) BACKGROUND count rate for the ( βα + ) mode of

the ATB count mode.

=α_BR the α BACKGROUND count rate for the α ONLY mode of the ATB count mode.
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4. Count Rates (Other than Background)
The remaining functions (Efficiency and Activity) depend on the corrected count rate of a standard (for
efficiency) or a sample (for activity determinations). While the background count rate can be determined as
an average from a set of N measurements, all other count rates are determined from a single measurement1.
These count rates are determined as follows:

4.1 Alpha Only Mode
When Method Blank subtraction is implemented, the blank is counted as part of the batch, and the count
times for the sample and blank are the same:

TTT blank ==1

Rate:

)( _1
1

2_1
1

1
αα δδδ B

blank
B R

T

C
R

T

C
R ⋅−⋅−⋅−=

)( _1_2_11 αα δδδ BgrossblankB RRRR ⋅−⋅−⋅−=

αα δδδδ _21_2_11 BgrossblankB RRRR ⋅⋅+⋅−⋅−=

αα δδδδ _21_1_21 BBgrossblank RRRR ⋅⋅+⋅−⋅−=

αδδδ _21_21 ]1[ Bgrossblank RRR ⋅−⋅−⋅−=

=1C the number of counts obtained during this (one) measurement.

=1T the count time of this measurement.

=1R =
1

1

T

C
the gross count rate of the sample (or standard in the case of efficiency).

=α_BR the BACKGROUND count rate for the Alpha Only count mode.

=blankC the number of counts obtained during this (one) measurement of the (one and only one)

designated blank.

=grossblankR _ =
1T

Cblank the GROSS count rate of the (one and only one) designated blank.

=1δ { }NONSUBTRACTIOBACKGROUNDif
YESNSUBTRACTIOBACKGROUNDif

=
=

___0
___1

=2δ { }NONSUBTRACTIOBLANKif
YESNSUBTRACTIOBLANKif

=
=

___0
___1

                                                       
1 The efficiency can also be determined as an average from a set of N measurements; however, this is an
average of N efficiency measurements – each determined from a single measurement of the count rate of the
calibration standard.
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Note: 121 == δδ  IS NOT CURRENTLY ALLOWED

Uncertainties:
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=1δ { }NONSUBTRACTIOBACKGROUNDif
YESNSUBTRACTIOBACKGROUNDif

=
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___0
___1

=2δ { }NONSUBTRACTIOBLANKif
YESNSUBTRACTIOBLANKif

=
=

___0
___1

Note: 121 == δδ  IS NOT CURRENTLY ALLOWED
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4.2 Simultaneous Mode
When Method Blank subtraction is implemented, the blank is counted as part of the batch, and the count
times for the sample and blank are the same:

TTT blank ==1

Without Spillover Correction
The equations for the count rate and corresponding uncertainty for the simultaneous mode without
spillover correction are identical to those for alpha only, except that they are applied to each channel (of
the simultaneous mode) individually:

Rate:

)( 1
1
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B

blank
B R
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C
R

T

C
R ⋅−⋅−⋅−= δδδ

Bgrossblank RRR ⋅−⋅−⋅−= ]1[ 21_21 δδδ

=1C the number of counts obtained (in the channel of interest) during this (one) measurement.

=1T the count time of this measurement.

=1R =
1

1

T

C
the gross count rate of the sample.

=BR the BACKGROUND count rate for the channel of interest for the Simultaneous count

mode. (i.e., α_BR  for alpha and β_BR  for beta.)

=grossblankR _ the GROSS count rate for the channel of interest of the (one and only one) designated

blank.

=1δ { }NONSUBTRACTIOBACKGROUNDif
YESNSUBTRACTIOBACKGROUNDif

=
=

___0
___1

=2δ { }NONSUBTRACTIOBLANKif
YESNSUBTRACTIOBLANKif

=
=

___0
___1

Note: 121 == δδ  IS NOT CURRENTLY ALLOWED

Uncertainties:
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if the background was determined from a set of N measurements.

=iBR _ iBR __α  if the α channel is the channel of interest

= iBR __ β  if the β channel is the channel of interest

=1δ { }NONSUBTRACTIOBACKGROUNDif
YESNSUBTRACTIOBACKGROUNDif

=
=

___0
___1

=2δ { }NONSUBTRACTIOBLANKif
YESNSUBTRACTIOBLANKif

=
=

___0
___1

Note: 121 == δδ  IS NOT CURRENTLY ALLOWED

With Spillover Correction
The equations for the count rate and corresponding uncertainty for the simultaneous mode with spillover
correction are derived in Appendix A. The results are presented below:

Rate:
The spillover corrected count rates can be written as
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Uncertainties:
The uncertainty in the spillover corrected count rates can be written as

( ) ( ) ( )[ ]22
2

2
1

22
2

2

2

2
' 1

]1[

1
_ αααα

σδδσδσ
χχ

σ
αββα

BMRR gross
⋅−⋅+⋅+•












⋅−

=
>−>−

+ ( ) ( ) ( )[ ]22
2

2
1

22
2

2

2

1
]1[ _ βββ

σδδσδσ
χχ

χ

αββα

αβ
BMR gross

⋅−⋅+⋅+•











⋅− >−>−

>−

+ [ ]
22

1

'










⋅













•−

⋅−

>−>−>−

>− >−

αβ

χ

αββα

αββ

χ

σ

χχ
χ

αβR

+ [ ]
22

1

'










⋅












⋅−
⋅⋅

>−>−>−

>−>− >−

βα

χ

αββα

βααβα

χ
σ

χχ
χχ

βαR

( ) ( ) ( )[ ]22
2

2
1

22
2

2

2

2
' 1

]1[

1
_ ββββ

σδδσδσ
χχ

σ
αββα

BMRR gross
⋅−⋅+⋅+•












⋅−

=
>−>−

+ ( ) ( ) ( )[ ]22
2

2
1

22
2

2

2

1
]1[ _ ααα

σδδσδσ
χχ

χ

αββα

βα
BMR gross

⋅−⋅+⋅+•











⋅− >−>−

>−

+ [ ]
22

1

'










⋅












•−

⋅−

>−>−>−

>− >−

βα

χ

αββα

βαα

χ
σ

χχ
χ

βαR

+ [ ]
22

1

'










⋅












⋅−
⋅⋅

>−>−>−

>−>− >−

αβ

χ

αββα

αββαβ

χ
σ

χχ
χχ

αβR



13

4.3 Alpha then Beta Mode
Once again, since only one blank per batch is allowed, and the blank is counted as part of the batch, the
count times for the sample and blank are the same:

T1 = Tblank = T

Alpha Count Rate in the ATB Mode:

αααα δδδ _21__2_ ]1[ Bgrossblankgross RRRR ⋅−⋅−⋅−=

=grossR _α the grossα count rate obtained during theα ONLY count of the ATB count.

=grossblankR __α the GROSSα count rate obtained during theα ONLY count of the ATB count of the (one

and only one) designated blank.

=α_BR theα (system) background count rate for theα ONLY mode of the ATB count mode.

=1δ { }NONSUBTRACTIOBACKGROUNDif
YESNSUBTRACTIOBACKGROUNDif

=
=

___0
___1

=2δ { }NONSUBTRACTIOBLANKif
YESNSUBTRACTIOBLANKif

=
=

___0
___1

Note: 121 == δδ  IS NOT CURRENTLY ALLOWED

Uncertainties:
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R α_= for the case in which the background was determined from a single measurement
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BiB αα

if the background was determined from a set of N

measurements.
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=1δ { }NONSUBTRACTIOBACKGROUNDif
YESNSUBTRACTIOBACKGROUNDif

=
=

___0
___1

=2δ { }NONSUBTRACTIOBLANKif
YESNSUBTRACTIOBLANKif

=
=

___0
___1

NOTE: 121 == δδ  IS NOT CURRENTLY ALLOWED

Beta Count Rate in the ATB Mode:
Since the ATB mode matches oneα only count to a corresponding ][ βα +  count, and the one (and only)

blank is counted during the same ATB count, then the count times are the same, and we may write:

TTTTT blankblank ==== ++ __][][ αβααβα

)]1[()]1[( _21_2]_[21_][2][ αααβαβαβαβ δδδδδδ BblankBblank RRRRRRR ⋅−⋅−⋅−−⋅−⋅−⋅−= +++

αααβαβαβαβ δδδδδδ _21_2]_[21_][2][ ]1[]1[ BblankBblank RRRRRRR ⋅−⋅+⋅+−⋅−⋅−⋅−= +++

)(]1[)( _]_[21__][2][ αβααβααβαβ δδδ BBblankblank RRRRRRR −⋅−⋅−−⋅−−= +++

OR

)(]1[)( _21__][2][ βαβααβαβ δδδ Bblankblank RRRRRR ⋅−⋅−−⋅−−= ++

where,

=+ ][ βαR the gross ( βα + ) count rate obtained during the [ βα + ] mode of the ATB count.

=αR the gross (α ) ONLY count rate obtained during  the [α ] ONLY mode of the ATB count.

=+ blankR _][ βα the gross ( βα + ) count rate of the (one and only one) designated blank obtained during

the [ βα + ] count of the blank during the [ βα + ] mode of the ATB count.

=blankR _α the gross (α ) ONLY count rate of the (one and only one) designated blank obtained

during the α ONLY count of the blank during theα ONLY mode of the ATB count.

=+ ]_[ βαBR the [ βα + ] (system) BACKGROUND count rate for the [ βα + ] mode of the ATB

count mode.

=α_BR the α (system) BACKGROUND count rate for the α ONLY mode of the ATB count

mode.

=β_BR the derived β (system) BACKGROUND count rate for the ATB count mode.

=1δ { }NONSUBTRACTIOBACKGROUNDif
YESNSUBTRACTIOBACKGROUNDif

=
=

___0
___1

=2δ { }NONSUBTRACTIOBLANKif
YESNSUBTRACTIOBLANKif

=
=

___0
___1

Note: 121 == δδ  IS NOT CURRENTLY ALLOWED

Uncertainties:
Once again, noting that

TTTTT blankblank ==== ++ __][][ αβααβα
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we may write

)(]1[ 2
_

2
]_[

2
2

2
1

__][2
2

][
αβα

αβααβα σσδδδσ
β BB

blankblank
R

T

R

T

R

T

R

T

R
+⋅−⋅+














+





⋅+





+





= +

++

where,

=+ ][ βαR the gross ( βα + ) count rate obtained during the [ βα + ] mode of the ATB count.

=αR the gross −α ONLY count rate obtained during  the [α ] ONLY mode of the ATB count.

=+ blankR _][ βα the gross ( βα + ) count rate of the (one and only one) designated blank obtained during

the [ βα + ] count of the blank during the [ βα + ] mode of the ATB count.

=blankR _α the gross −α ONLY count rate of the (one and only one) designated blank obtained

during the [α ]ONLY count of the blank during the [α ]ONLY mode of the ATB count.

=+ ]_[ βαBR the ( βα + ) (system) BACKGROUND count rate for the [ βα + ] mode of the ATB

count mode.

=α_BR the −α ONLY (system) BACKGROUND count rate for the [α ]ONLY mode of the ATB

count mode.

=+ ]_[ βασ B the uncertainty in the ( βα + ) (system) BACKGROUND count rate for the [ βα + ]

mode of the ATB count mode.

B

B

T

R ]_[ βα += for the case in which the background was determined from a single

measurement

( )
)1(

1

2
]_[_]_[

−

−
=

∑
=

++

N

RR
N

i
BiB βαβα

if the background was determined from a set of N

measurements.

=ασ _B the uncertainty in the α (system) BACKGROUND count rate for the α ONLY mode of

the ATB count mode.

B

B

T

R α_= for the case in which the background was determined from a single

measurement
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( )
)1(

1

2
___

−

−
=

∑
=

N

RR
N

i
BiB αα

if the background was determined from a set of N

measurements.

=1δ { }NONSUBTRACTIOBACKGROUNDif
YESNSUBTRACTIOBACKGROUNDif

=
=

___0
___1

=2δ { }NONSUBTRACTIOBLANKif
YESNSUBTRACTIOBLANKif

=
=

___0
___1

NOTE: 121 == δδ  IS NOT CURRENTLY ALLOWED

NOTE: Care should be taken in selecting background subtraction versus method blank subtraction
during the alpha then beta mode. Unlike the method blank protocol (in modes other than ATB)
in which the result of subtracting the gross blank from the gross sample produces the same
result as subtracting the net blank from the net sample, in the ATB mode, subtracting the
grossα only count from the gross ( βα + ) count does not produce the same result as

subtracting the netα only count from the net ( βα + ) count. The difference is the

derivedβ background. While the 1δ  parameter ensures that system background is consistently

applied to theα only and ( βα + ) components of the above equations for the ATB mode, it

needs to be noted that the system backgrounds for these modes are different. (The difference is

the derivedβ background.) In fact, the1δ  parameter multiplies what one could call the “derived

beta background”. Thus turning background subtraction ON versus OFF determines whether the
“derived beta background” is subtracted or not – consistent with the definition of net count
versus gross count. In other words, (derived grossβ – β background) and (net [ βα + ] – net

[α  only]) produce the same netβ only result (760 in the table below).

In a similar fashion, when one tries to take into account a method blank, consistent results will
be obtained provided one is consistent in matching gross with gross and net with net
measurements.

The following table helps to demonstrate these concepts:

TABLE

NOTE: In the context of this Table, the following definitions will apply:
TOTAL = sample contribution + blank contribution
GROSS = including system background
NET = the system background has been subtracted.
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MODE: (α ONLY) ( βα + ) | DERIVEDβ
| TOTAL β BLANK BLANK

| GROSS SYS GROSS NET

| β BACK β β
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =| = = = = = = = = = = = = = = = = = =

=

Observed Backgrounds: 10 50 |
Derived Background: | 40

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -| - - - - - - - - - - - - - - - - - - - - - - - - -
-

Observed Blank: 30 400 |

Derived Gross Blank: | 370
Derived Net Blank: 20 350 | 330

= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =| = = = = = = = = = = = = = = = = = =
=

Observed Count: 100 900 |

Derived Gross Count: | 800 800 800

Derived Total Net Beta Count: | 760
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =| = = = = = = = = = = = = = = = = = =

=

0,0 21 == δδ : Gross Total SAMPLE: 100 900 | 8001

|

0,1 21 == δδ : Gross Total Samp - SYS BACK: 90 850 | 7602

|

1,0 21 == δδ : Gross Total Samp - Gross Blank: 70 500 | 4303

|

1,1 21 == δδ :Net Total Samp – Net Blank: (90-20) (850-350) | 4304

NOTE 1: The TOTAL gross beta counts. These are due to contributions from:
the system background = 40

The beta contribution from the method = 330
And the beta contribution from the sample itself =  430

800

NOTE 2: The TOTAL net beta counts. These are due to contributions from:
The beta contribution from the method = 330

And the beta contribution from the sample itself =  430
760

NOTE 3: The NET SAMPLE beta counts. These are due to contributions from:
the NET beta contribution from the sample itself =  430

430
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While this is obtained by subtracting the GROSS blank count rate from the GROSS sample count rate, it still
produces the NET beta count rate because the system background contribution is common to both the
sample and blank, and is thus subtracted out:

The GROSS sample count rate = 800 (40+330+430)
the GROSS blank count rate =  370 (40+330)

430

NOTE 4: The NET SAMPLE beta counts. These are due to contributions from:
the NET beta contribution from the sample itself =  430

430
This result is obtained by subtracting the NET blank count rate from the NET sample count rate. It
produces the same NET beta count rate as demonstrated in NOTE 3:

The NET sample count rate = 760 (330+430)
the NET blank count rate =  330 (330)

430

These results follow from the associative property of addition and subtraction.
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5. Efficiency and Spillover Calibrations without Mass Attenuation

5.1 Efficiency:
For: Nt1

∑∑
==

⋅=⋅=
N

i

dcalci
N

i
i

S

R

NN 1

'_

1

11 εε

where,

=iε =
S

R dcalci '_
the efficiency determined from the ith observation.

=dcalciR '_ the “calculated” count rate (net or gross as determined by the analysis profile) for the

particle α( or )β of interest during the ith observation.

=S the emission rate of the calibration standard for the particle of interest.
TeS ∆⋅−⋅= λ

0

=0S the emission rate of the calibration standard as of the certificate date.

2/1

)2ln(

T
=λ

=∆T Elapsed time between Calibration source certificate date/time and the Count
Acquisition Date/Time.

Uncertainty:
For 1=N :

22

'_11

'_11 




+










=

SR
S

dcalc

R dcalc σσ
ε

σ ε

=
1Rσ Uncertainty in the “calculated” count rate

From the count rate determination as stored in the database.

=Sσ Uncertainty in the emission rate of the calibration standard.

For 1>N :

( )∑
=

−⋅
−

=
N

i
i

N 1

22

)1(

1 εεσ
ε
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5.2 Spillover – Simultaneous Mode Only:

Spilldown – Determined during alpha efficiency in Simultaneous Mode:
For a single measurement:

dcalc

dcalc

R

R

'__1

'__1
_1

α

β
βαχ =>−

and

2

'__1

2

'__1_1

'__1'__1_1











+










=

>−

>−

dcalc

R

dcalc

R

RR
dcalcdcalc

αββα

χ αββα
σσ

χ
σ

or restated as

2

'__1

2

'__1
_1

'__1'__1

_1 









+










⋅= >−>−

dcalc

R

dcalc

R

RR
dcalcdcalc

αβ
βαχ

αβ

βα

σσ
χσ

where,

dcalcR '__1 β = the “calculated” beta count rate (net or gross as determined by the

analysis profile) in the simultaneous count mode for the one
observation.

dcalcR '__1 α = the “calculated” alpha count rate (net or gross as determined by the

analysis profile) in the simultaneous count mode for the one
observation.

dcalcR '__1 α
σ = the uncertainty in the “calculated” alpha count rate (net or gross as

determined by the analysis profile) in the simultaneous count mode for
the one observation.

dcalcR '__1 β
σ = the uncertainty in the “calculated” beta count rate (net or gross as

determined by the analysis profile) in the simultaneous count mode for
the one observation.

For a set of N measurements:

∑
=

>−>− ⋅=
N

i
i

N 1
_

1
βαβα χχ

where,

dcalci

dcalci
i

R

R

'__

'__
_

α

β
βαχ =>−

=dcalciR '__ β the “calculated” beta count rate (net or gross as determined by the analysis

profile) in the simultaneous count mode for the ith observation.

dcalciR '__α = the “calculated” alpha count rate (net or gross as determined by the

analysis profile) in the simultaneous count mode for the ith observation.

and
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( )∑
=

>−>− −⋅
−

=
>−

N

i
i

N 1

2
_

2

)1(

1
βαβαχ χχσ

βα

Spillup – Determined during beta efficiency in Simultaneous Mode:
For a single measurement:

dcalc

dcalc

R

R

'__1

'__1
_1

β

α
αβχ =>−

and

2

'__1

2

'__1_1

'__1'__1_1











+










=

>−

>−

dcalc

R

dcalc

R

RR
dcalcdcalc

αβαβ

χ αβαβ
σσ

χ
σ

or restated as

2

'__1

2

'__1
_1

'__1'__1

_1 









+










⋅= >−>−

dcalc

R

dcalc

R

RR
dcalcdcalc

αβ
αβχ

αβ

αβ

σσ
χσ

where,

dcalcR '__1 α = the “calculated” alpha count rate (net or gross as determined by the

analysis profile) in the simultaneous count mode for the one
observation.

dcalcR '__1 β = the “calculated” beta count rate (net or gross as determined by the

analysis profile) in the simultaneous count mode for the one
observation.

dcalcR '__1 α
σ = the uncertainty in the “calculated” alpha count rate (net or gross as

determined by the analysis profile) in the simultaneous count mode for
the one observation.

dcalcR '__1 β
σ = the uncertainty in the “calculated” beta count rate (net or gross as

determined by the analysis profile) in the simultaneous count mode for
the one observation.

For a set of N measurements:

∑
=

>−>− ⋅=
N

i
i

N 1
_

1
αβαβ χχ

where,

dcalci

dcalci
i

R

R

'__

'__
_

β

α
αβχ =>−

=dcalciR '__α the “calculated” alpha count rate (net or gross as determined by the

analysis profile) in the simultaneous count mode for the ith observation.

dcalciR '__ β = the “calculated” beta count rate (net or gross as determined by the analysis

profile) in the simultaneous count mode for the ith observation.
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and

( )∑
=

>−>− −⋅
−

=
>−

N

i
i

N 1

2
_

2

)1(

1
αβαβχ χχσ

αβ
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6. Efficiency and Spillover Calibrations with Mass Attenuation

6.1 Efficiency Calibrations with Mass Attenuation

The efficiency for samples of non-zero mass is modeled as a function of mass. Four models are available:

* Linear: ( ) mCCm ⋅+= 10ε

* Exponential: ( ) mCeCm ⋅−⋅= 1
0ε

* Inverse Linear: ( ) [ ] 1
10

−⋅+= mCCmε

* Inverse Quadratic: ( ) [ ] 12
210

−⋅+⋅+= mCmCCmε
The coefficients of the equation (for the selected model) are determined from a weighted least squares fit to a

set of paired mass-efficiency observations: [( 11,εm );( 22 ,εm );….;( NNm ε, )]. These coefficients, along with

their uncertainties, are stored so that the efficiency, and its uncertainty, for a sample of any (attenuating)
mass can be calculated and used for an activity determination.

Linear

The Fitted Efficiency

The coefficients of the linear solution:

( ) mCCm ⋅+= 10ε

are determined by solving for the vector b in the following equations:

VbM =⋅
where,

∑
=

−− ⋅⋅=
N

i

K
i

J
iiJK mmwM

1

11









=

1

0

C

C
b

∑
=

−⋅⋅=
N

i

K
iiiK mwV

1

1ε

and

2

1

i

iw
εσ

=

The coefficients are then given by

VMbMMb ⋅=⋅⋅= −− 11
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and the uncertainties in the coefficients are given by

1
11

2

0

−= MCσ

1
22

2

1

−= MCσ

The reduced 2χ of the final fit, Z, is given by:

2

2

−
=

N
Z

χ

where,

( )[ ]∑
=

−
=

N

i

ii

i

m

1
2

2
2

εσ
εεχ

For good fits, 1→Z .

The Uncertainty in the Fitted Efficiency

The uncertainty in the calculated efficiency is determined as follows:

Given that the efficiency is calculated from the following equation:

( ) mCCm ⋅+= 10ε
we can write

2
2

2

2

1

2

2

0

2

10
)( mCC mCC

d σεσεσεε ⋅




∂
∂+⋅








∂
∂+⋅








∂
∂=

[ ] [ ] [ ] 22
1

2222

10
1 mCC Cm σσσ ⋅+⋅+⋅=

22
1

222

10 mCC Cm σσσ ⋅+⋅+=

Substituting
1

11
2

0

−= MCσ

1
22

2

1

−= MCσ
we can write

22
1

1
22

21
11

2
mCMmMd σε ⋅+⋅+= −−

or
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22
1

1
22

21
11 mCMmMd σε ⋅+⋅+= −−

Exponential

The Fitted Efficiency

The coefficients of the exponential solution:

( ) mCeCm ⋅−⋅= 1
0ε

are determined by first linearizing the equation:

( ) mAAmCCmy ⋅+=⋅−== 1010)ln(]ln[ε

and then solving for 0A and 1A by solving for the vectorb in the equation

VbM =⋅
in which,

∑
=

−− ⋅⋅=
N

i

K
i

J
iiJK mmwM

1

11









=

1

0

A

A
b

∑
=

−⋅⋅=
N

i

K
iiiK mwV

1

1)ln(ε

and

2

1

y
iw

σ
=

Since )ln(ε=y

and ( ) ( )2
2

2 1 ε
ε

ddy ⋅




=

the variance of y is given by

2
2

2 1
εσ

ε
σ ⋅





=y

so that the weighting factor, wi, is given by
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2

2

εσ
ε=iw

Then, noting that

)ln( 00 CA =

11 CA −=
we may now write:

0
0

AeC =

11 AC −=

The coefficients, 0A and 1A , are given by

VMbMM
A

A
b ⋅=⋅⋅=








= −− 11

1

0

and, as before, the uncertainties in the coefficients0A and 1A  are given by

1
11

2

0

−= MAσ
1

22
2

1

−= MAσ

Noting the uncertainties in the coefficients0C and 1C , are given by

0

0

0 A
A

C e σσ ⋅=

11 AC σσ =

and substituting for
0Aσ and

1Aσ in the above equations, we obtain:

1
110

1
11

0

0

0

0

−− ⋅=⋅=⋅= MCMee A
A

A
C σσ

1
2211

−== MAC σσ

As before, the reduced2χ of the final fit is given by:

2

2

−
=

N
Z

χ

where,

( )[ ]∑
=

−
=

N

i

ii

i

m

1
2

2
2

εσ
εεχ

Once again, for good fits, 1→Z .
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The Uncertainty in the Fitted Efficiency

The uncertainty in the calculated efficiency is determined as follows:

Given that the efficiency is calculated from the following equation:

( ) mCeCm ⋅−⋅= 1
0ε

we can write

2
2

2

2

1

2

2

0

2

10
)( mCC

mCC
d σεσεσεε ⋅




∂
∂+⋅








∂
∂+⋅








∂
∂=

[ ] ( )[ ] ( )[ ] 22

10
22

0
22

1

1

1

0

1
m

mC
C

mC
C

mC CeCmeCe σσσ ⋅−⋅⋅+⋅−⋅⋅+⋅= ⋅−⋅−⋅−

[ ] [ ]22
1

2
0

222
0

22

10

1
mCC

mC CCmCe σσσ ⋅⋅+⋅⋅+•= ⋅−

[ ]











⋅+⋅+•⋅= ⋅− 22

1
22

2
0

2
2

0 1

01
mC

CmC Cm
C

eC σσ
σ

Substituting

( ) mCeCm ⋅−⋅= 1
0ε

1
110

1
11

0

0

0

0

−− ⋅=⋅=⋅= MCMee A
A

A
C σσ

1
2211

−== MAC σσ
we can write

[ ]22
1

1
22

21
11

22)( mCMmMd σεε ⋅+⋅+•= −−

or

22
1

1
22

21
11 mCMmMd σεε ⋅+⋅+•= −−

or

22
1

1
22

21
11 mCMmM

d σ
ε
ε ⋅+⋅+= −−
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Inverse Linear

The Fitted Efficiency

The coefficients of the inverse linear solution:

( ) [ ] 1
10

−⋅+= mCCmε
are determined by first linearizing the equation:

( ) mCC
m

y ⋅+== 10

1

ε

and then solving for 0C and 1C by solving for the vectorb in the equation

VbM =⋅
in which,

∑
=

−− ⋅⋅=
N

i

K
i

J
iiJK mmwM

1

11









=

1

0

C

C
b

∑
=

−⋅⋅=
N

i

K
i

i
iK mwV

1

11
ε

and

2

1

y
iw

σ
=

Since
ε
1=y

and ( ) ( )2
2

2

2 1 ε
ε

ddy ⋅




 −=

the variance of y is given by

2
4

2 1
εσ

ε
σ ⋅=y

so that the weighting factor, wi, is given by
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2

4

εσ
ε=iw

The coefficients, 0C and 1C , are given by

VMbMM
C

C
b ⋅=⋅⋅=








= −− 11

1

0

The uncertainties in the coefficients0C and 1C  are given by

1
11

2

0

−= MCσ
1

22
2

1

−= MCσ

As before, the reduced2χ of the final fit is given by:

2

2

−
=

N
Z

χ

where,

( )[ ]∑
=

−
=

N

i

ii

i

m

1
2

2
2

εσ
εεχ

Once again, for good fits, 1→Z .

The Uncertainty in the Fitted Efficiency

The uncertainty in the calculated efficiency is determined as follows:

Given that the efficiency is calculated from the following equation:

( ) [ ] 1
10

−⋅+= mCCmε
we can write

2
2

2

2

1

2

2

0

2

10
)( mCC

mCC
d σεσεσεε ⋅




∂
∂+⋅








∂
∂+⋅








∂
∂=

[ ] [ ] [ ] [ ] [ ] 22
1

2

2
10

22

2

2
10

2

2

2
10

111
10 mCC C

mCC
m

mCCmCC
σσσ ⋅⋅








⋅+

−+⋅⋅







⋅+

−+⋅







⋅+

−=

[ ] [ ]22
1

222

2

2
10

10

1
mCC Cm

mCC
σσσ ⋅+⋅+•









⋅+
−=
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Substituting

( ) [ ] 1
10

−⋅+= mCCmε
We obtain

[ ]22
1

22242

10
)( mCC Cmd σσσεε ⋅+⋅+•=

Now substituting
1

11
2

0

−= MCσ
1

22
2

1

−= MCσ
We obtain

[ ]22
1

1
22

21
11

42)( mCMmMd σεε ⋅+⋅+•= −−

or

22
1

1
22

21
11

2
mCMmMd σεε ⋅+⋅+•= −−

or

22
1

1
22

21
11 mCMmM

d σε
ε
ε ⋅+⋅+•= −−
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Inverse Quadratic

The Fitted Efficiency

The coefficients of the inverse quadratic solution:

( ) [ ] 12
210

−⋅+⋅+= mCmCCmε
are determined by first linearizing the equation:

( )
2

210

1
mCmCC

m
y ⋅+⋅+==

ε

and then solving for 0C , 1C , and 2C by solving for the vectorb in the equation

VbM =⋅
in which,

∑
=

−− ⋅⋅=
N

i

K
i

J
iiJK mmwM

1

11
















=

2

1

0

C

C

C

b

∑
=

−⋅⋅=
N

i

K
i

i
iK mwV

1

11
ε

and

2

1

y
iw

σ
=

Since
ε
1=y

and ( ) ( )2
2

2

2 1 ε
ε

ddy ⋅




 −=

the variance of y is given by

2
4

2 1
εσ

ε
σ ⋅=y

so that the weighting factor, wi, is given by
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2

4

εσ
ε=iw

The coefficients, 0C , 1C , and 2C , are given by

VMbMM

C

C

C

b ⋅=⋅⋅=















= −− 11

2

1

0

The uncertainties in the coefficients0C , 1C , and 2C  are given by

1
11

2

0

−= MCσ
1

22
2

1

−= MCσ
1

33
2

2

−= MCσ

With three coefficients, the reduced2χ of the final fit is given by:

3

2

−
=

N
Z

χ

where,

( )[ ]∑
=

−
=

N

i

ii

i

m

1
2

2
2

εσ
εεχ

Once again, for good fits, 1→Z .

The Uncertainty in the Fitted Efficiency

The uncertainty in the calculated efficiency is determined as follows:
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Given that the efficiency is calculated from the following equation:

( ) [ ] 12
210

−⋅+⋅+= mCmCCmε
we can write

2
2

2

2

2

2

2

1

2

2

0

2

210
)( mCCC mCCC

d σεσεσεσεε ⋅




∂
∂+⋅








∂
∂+⋅








∂
∂+⋅








∂
∂=

[ ]
2

2

22
210

0

1
C

mCmCC
σ⋅













⋅+⋅+
−=

+ [ ]
22

2

22
210

1
)(

1
Cm

mCmCC
σ⋅⋅













⋅+⋅+
−

+ [ ]
222

2

22
210

2
)(

1
Cm

mCmCC
σ⋅⋅













⋅+⋅+
−

+ [ ]
22

2

2

22
210

)2(
1

mmC
mCmCC

σ⋅⋅⋅⋅












⋅+⋅+
−

[ ] [ ]22
21

222222

2

22
210

2 )2()()(
1

)(
210 mCCC mCCmm

mCmCC
d σσσσε ⋅⋅⋅++⋅+⋅+•













⋅+⋅+
−=

[ ] [ ]22
21

24222

2

22
210

)2(
1

210 mCCC mCCmm
mCmCC

σσσσ ⋅⋅⋅++⋅+⋅+•












⋅+⋅+
−=

Substituting ( ) [ ] 12
210

−⋅+⋅+= mCmCCmε
We obtain

[ ]22
21

2422242 )2()(
210 mCCC mCCmmd σσσσεε ⋅⋅⋅++⋅+⋅+•=
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Now substituting
1

11
2

0

−= MCσ
1

22
2

1

−= MCσ
1

33
2

2

−= MCσ
We obtain

[ ]22
21

1
33

41
22

21
11

42 )2()( mmCCMmMmMd σεε ⋅⋅⋅++⋅+⋅+•= −−−

or

22
21

1
33

41
22

21
11

2 )2( mmCCMmMmMd σεε ⋅⋅⋅++⋅+⋅+•= −−−

or

22
21

1
33

41
22

21
11 )2( mmCCMmMmM

d σε
ε
ε ⋅⋅⋅++⋅+⋅+•= −−−
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6.2 Spillover Calibrations (Simultaneous Mode Only) with Mass Attenuation

Note: Traditionally the symbolχ has been used to represent spillover; however, in this section we will also be

working with the Chi-Squared ( )2χ  value of the least squares fit. Therefore, to avoid confusion between

the spillover and the Chi-Squared value of the fit, the symbol “S” will be used in this section to represent
spillover.

The spillover for samples of non-zero mass is modeled as a function of mass. Four models are available:

* Linear: ( ) mCCmS ⋅+= 10

* Exponential: ( ) mCeCmS ⋅−⋅= 1
0

* Inverse Linear: ( ) [ ] 1
10

−⋅+= mCCmS

* Inverse Quadratic: ( ) [ ] 12
210

−⋅+⋅+= mCmCCmS

The coefficients of the equation (for the selected model) are determined from a weighted least squares fit to a

set of paired mass-spillover observations: [( 11,Sm );( 22 ,Sm );….;( NN Sm , )]. These coefficients, along with

their uncertainties, are stored so that the spillover, and its uncertainty, for a sample of any (attenuating) mass
can be calculated and used for an activity determination.

Linear

The Fitted Spillover

The coefficients of the linear solution:

( ) mCCmS ⋅+= 10

are determined by solving for the vector b in the following equations:

VbM =⋅
where,

∑
=

−− ⋅⋅=
N

i

K
i

J
iiJK mmwM

1

11









=

1

0

C

C
b

∑
=

−⋅⋅=
N

i

K
iiiK mwV

1

1χ

and

2

1

i

iw
χσ

=
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The coefficients are then given by

VMbMMb ⋅=⋅⋅= −− 11

and the uncertainties in the coefficients are given by

1
11

2

0

−= MCσ

1
22

2

1

−= MCσ

The reduced 2χ of the final fit is given by:

2

2

−
=

N
Z

χ

where,

( )[ ]∑
=

−=
N

i S

ii

i

mSS

1
2

2
2

σ
χ

For good fits, 1→Z .

The Uncertainty in the Fitted Spillover

The uncertainty in the calculated spillover is determined as follows:

Given that the spillover is calculated from the following equation:

( ) mCCmS ⋅+= 10

we can write

2
2

2

2

1

2

2

0

2

10
)( mCC m

S

C

S

C

S
dS σσσ ⋅




∂
∂+⋅








∂
∂+⋅








∂
∂=

[ ] [ ] [ ] 22
1

2222

10
1 mCC Cm σσσ ⋅+⋅+⋅=

22
1

222

10 mCC Cm σσσ ⋅+⋅+=

Substituting
1

11
2

0

−= MCσ

1
22

2

1

−= MCσ
we can write
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22
1

1
22

21
11

2
mCMmMdS σ⋅+⋅+= −−

or

22
1

1
22

21
11 mCMmMdS σ⋅+⋅+= −−

Exponential

The Fitted Spillover

The coefficients of the exponential solution:

( ) mCeCmS ⋅−⋅= 1
0

are determined by first linearizing the equation:

( ) mAAmCCmSy ⋅+=⋅−== 1010)ln(]ln[

and then solving for 0A and 1A by solving for the vectorb in the equation

VbM =⋅
in which,

∑
=

−− ⋅⋅=
N

i

K
i

J
iiJK mmwM

1

11









=

1

0

A

A
b

∑
=

−⋅⋅=
N

i

K
iiiK mSwV

1

1)ln(

and

2

1

y
iw

σ
=

Since )ln(Sy =

and ( ) ( )2
2

2 1
dS

S
dy ⋅





=

the variance of y is given by

2
2

2 1
Sy

S
σσ ⋅





=
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so that the weighting factor, wi, is given by

2

2

S
i

S
w

σ
=

Then, noting that

)ln( 00 CA =

11 CA −=
we may now write:

0
0

AeC =

11 AC −=

The coefficients, 0A and 1A , are given by

VMbMM
A

A
b ⋅=⋅⋅=








= −− 11

1

0

and, as before, the uncertainties in the coefficients0A and 1A  are given by

1
11

2

0

−= MAσ
1

22
2

1

−= MAσ

Noting the uncertainties in the coefficients0C and 1C , are given by

0

0

0 A
A

C e σσ ⋅=

11 AC σσ =

and substituting for
0Aσ and

1Aσ in the above equations, we obtain:

1
110

1
11

0

0

0

0

−− ⋅=⋅=⋅= MCMee A
A

A
C σσ

1
2211

−== MAC σσ

As before, the reduced2χ of the final fit is given by:

2

2

−
=

N
Z

χ

where,

( )[ ]∑
=

−=
N

i S

ii

i

mSS

1
2

2
2

σ
χ

Once again, for good fits, 1→Z .
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The Uncertainty in the Fitted Spillover

The uncertainty in the calculated spillover is determined as follows:

Given that the spillover is calculated from the following equation:

( ) mCeCmS ⋅−⋅= 1
0

we can write

2
2

2

2

1

2

2

0

2
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)( mCC

m

S

C

S

C

S
dS σσσ ⋅




∂
∂+⋅








∂
∂+⋅








∂
∂=

[ ] ( )[ ] ( )[ ] 22
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0
22

1

1

1

0

1
m

mC
C

mC
C

mC CeCmeCe σσσ ⋅−⋅⋅+⋅−⋅⋅+⋅= ⋅−⋅−⋅−

[ ] [ ]22
1

2
0
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0

22
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1
mCC

mC CCmCe σσσ ⋅⋅+⋅⋅+•= ⋅−

[ ]











⋅+⋅+•⋅= ⋅− 22

1
22

2
0

2
2

0 1

01
mC

CmC Cm
C

eC σσ
σ

Substituting

( ) mCeCmS ⋅−⋅= 1
0

1
110

1
11

0

0

0

0

−− ⋅=⋅=⋅= MCMee A
A

A
C σσ

1
2211

−== MAC σσ
we can write

[ ]22
1

1
22

21
11

22)( mCMmMSdS σ⋅+⋅+•= −−

or

22
1

1
22

21
11 mCMmMSdS σ⋅+⋅+•= −−

or

22
1

1
22

21
11 mCMmM

S

dS σ⋅+⋅+= −−
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Inverse Linear

The Fitted Spillover

The coefficients of the inverse linear solution:

( ) [ ] 1
10

−⋅+= mCCmS

are determined by first linearizing the equation:

( ) mCC
mS

y ⋅+== 10

1

and then solving for 0C and 1C by solving for the vectorb in the equation

VbM =⋅
in which,

∑
=

−− ⋅⋅=
N

i

K
i

J
iiJK mmwM
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11









=

1

0

C

C
b

∑
=

−⋅⋅=
N

i

K
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i
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S
wV

1

11
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2

1

y
iw

σ
=

Since
S

y
1=

and ( ) ( )2
2

2

2 1 χd
S

dy ⋅




 −=

the variance of y is given by

2
4

2 1
Sy S

σσ ⋅=

so that the weighting factor, wi, is given by
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2

4

S
i

S
w

σ
=

The coefficients, 0C and 1C , are given by

VMbMM
C

C
b ⋅=⋅⋅=








= −− 11

1

0

The uncertainties in the coefficients0C and 1C  are given by

1
11

2

0

−= MCσ
1

22
2

1

−= MCσ

As before, the reduced2χ of the final fit is given by:

2

2

−
=

N
Z

χ

where,

( )[ ]∑
=

−=
N

i S
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i

mSS

1
2

2
2

σ
χ

Once again, for good fits, 1→Z .

The Uncertainty in the Fitted Spillover

The uncertainty in the calculated spillover is determined as follows:

Given that the spillover is calculated from the following equation:

( ) [ ] 1
10

−⋅+= mCCmS

we can write
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2
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

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Substituting

( ) [ ] 1
10

−⋅+= mCCmS

We obtain

[ ]22
1

22242

10
)( mCC CmSdS σσσ ⋅+⋅+•=

Now substituting
1

11
2

0

−= MCσ
1

22
2

1

−= MCσ
We obtain

[ ]22
1

1
22

21
11

42)( mCMmMSdS σ⋅+⋅+•= −−

or

22
1

1
22

21
11

2
mCMmMSdS σ⋅+⋅+•= −−

or

22
1

1
22

21
11 mCMmMS

S

dS σ⋅+⋅+•= −−

Inverse Quadratic

The Fitted Spillover

The coefficients of the inverse quadratic solution:

( ) [ ] 12
210

−⋅+⋅+= mCmCCmS

are determined by first linearizing the equation:

( )
2

210

1
mCmCC

mS
y ⋅+⋅+==

and then solving for 0C , 1C , and 2C by solving for the vectorb in the equation

VbM =⋅
in which,
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=
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N
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
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b
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∑
=

−⋅⋅=
N

i

K
i

i
iK m

S
wV

1

11
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2

1

y
iw

σ
=
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S

y
1=

and ( ) ( )2
2

2

2 1
dS

S
dy ⋅





 −=

the variance of y is given by

2
4

2 1
Sy

S
σσ ⋅=

so that the weighting factor, wi, is given by

2

4

S
i

S
w

σ
=

The coefficients, 0C , 1C , and 2C , are given by

VMbMM

C

C

C

b ⋅=⋅⋅=















= −− 11

2

1

0

The uncertainties in the coefficients0C , 1C , and 2C  are given by

1
11

2

0

−= MCσ
1

22
2

1

−= MCσ
1

33
2

2

−= MCσ

With three coefficients, the reduced2χ of the final fit is given by:

3

2

−
=

N
Z

χ

where,

( )[ ]∑
=

−=
N

i S

ii

i

mSS

1
2

2
2

σ
χ

Once again, for good fits, 1→Z .
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The Uncertainty in the Fitted Spillover

The uncertainty in the calculated spillover is determined as follows:

Given that the spillover is calculated from the following equation:

( ) [ ] 12
210

−⋅+⋅+= mCmCCmS

we can write

2
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2

2

2

2

2

1

2

2
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


∂
∂+⋅








∂
∂+⋅








∂
∂+⋅








∂
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
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


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

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


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
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−
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2
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mCmCC
σ⋅⋅



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






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)2(
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











⋅+⋅+
−

[ ] [ ]22
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Substituting

( ) [ ] 12
210

−⋅+⋅+= mCmCCmS

We obtain

[ ]22
21

2422242 )2()(
210 mCCC mCCmmSdS σσσσ ⋅⋅⋅++⋅+⋅+•=

Now substituting
1

11
2

0

−= MCσ
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1
22

2

1

−= MCσ
1

33
2

2

−= MCσ
We obtain

[ ]22
21

1
33

41
22

21
11

42 )2()( mmCCMmMmMSdS σ⋅⋅⋅++⋅+⋅+•= −−−

or

22
21

1
33

41
22

21
11

2 )2( mmCCMmMmMSdS σ⋅⋅⋅++⋅+⋅+•= −−−

or

22
21

1
33

41
22

21
11 )2( mmCCMmMmMS

S

dS σ⋅⋅⋅++⋅+⋅+•= −−−
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7. Sample Activity
The activity is reported in units of activity per unit size (mass, volume, etc.). For certain sample types (e.g.,
smears), the size is pre-defined as 1 and the size units are none, causing the reported activity to simply be the
total activity of the sample. The activity is calculated from the “corrected” count rate of the sample and the
efficiency for the geometry of the sample. If the activity is to be reported in units other than dpm, an
appropriate conversion factor is applied:

AC
dcorr

S F
S

R
A ⋅

⋅
=

ε
'

where,

=SA the Activity of the sample (in units of activity per unit size).

=dcorrR ' the “corrected” count rate (net or gross or even Spillover corrected as determined by the analysis

profile).
=ε the efficiency (either simple or mass attenuated) as appropriate to the sample geometry

=S the Size of the sample in the selected units. For certain sample types (e.g., smears), 1=S .

=ACF Activity Conversion Factor for the desired Activity units.

The uncertainty in the sample activity is given by

AC
SR

SA F
SR

A
S

•++⋅=
2

2

2

2

2

2 σ
ε
σσσ ε

where,

=
dcorrR '

σ the uncertainty in the “corrected” count rate.

=εσ the uncertainty in the efficiency.

=Sσ the uncertainty in the sample size.
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8. MDA
The MDA is given by

AC
RATED

F
S

L
MDA •

⋅
=

ε
_

where,

=ACF Activity Conversion Factor for the desired Activity units.

=S the Size of the sample in the selected units. For certain sample types (e.g., smears), 1=S .

=ε the efficiency (either simple or mass attenuated) as appropriate to the sample geometry

=RATEDL _ the “Detection Limit” (in units of rate; e.g., cpm), which is given by

RATEC
S

RATED L
T

k
L _

2

_ 2⋅+=

in which RATECL _   is given by

2
_0_ BR

S

B
RATERATEC

T

R
kkL σσ +⋅=⋅=

where

=ST the sample count time

and,

=
BRσ the uncertainty in the (system) BACKGROUND count rate.

B

B

T

R=  for the case in which the background was determined from a single measurement

( )

)1(
1

2

−

−
=

∑
=

N

RR
N

i
BB

if the background was determined from a set of N measurements.

This “empirical uncertainty” IS NOT YET IMPLEMENTED!

Thus,

2
2

_ 2
BR

S

B

S
RATED

T

R
k

T

k
L σ+⋅⋅+=

For the case in which the background was determined from a single measurement, this becomes

B

B

S

B

S
RATED

T

R

T

R
k

T

k
L +⋅⋅+= 2

2

_

Substituting

645.1=== kkk βα

we obtain
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B

B

S

B

SB

B

S

B

S
RATED

T

R

T

R

TT

R

T

R

T
L +⋅+=+⋅⋅+= 29.3

706.2
645.12

645.1 2

_

and

AC

B

B

S

B

S
F

S

T

R

T

R

T
MDA •

⋅









+⋅+

=
ε

29.3
706.2

For the case in which the background was determined from a set of N measurements, the MDA is given by

AC

R
S

B

S
F

S

T

R

T
MDA

B

•
⋅









+⋅+

=
ε

σ 229.3
706.2

in which

=
BRσ the uncertainty in the (system) BACKGROUND count rate.
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Appendix A: Derivation of the Activity and Count Rate Equations
This appendix includes the derivation of the activity and count rate equations for the case in which Spillover
Correction is applied in the Simultaneous Mode.

A.1  Without Consideration for Method Blank Subtraction

Definitions:

=βA the beta activity in dpm.

=αA the alpha activity in dpm.

=βR the GROSS beta count rate in cpm.

=αR the GROSS alpha count rate in cpm.

=βε the beta efficiency (either simple or mass attenuated) as appropriate to the sample geometry

=αε the alpha efficiency (either simple or mass attenuated) as appropriate to the sample geometry

=βB the beta (system) background count rate in cpm.

=αB the alpha (system) background count rate in cpm.

=>− βαχ the fractional spillover (spilldown) from alpha to beta.

=>− αβχ the fractional spillover (spillup) from beta to alpha.

Spilldown:

net

net

R

R

_

_

α

β
βαχ ≡>−

and

2

_

2

_

__











+










⋅= >−>−

net

R

net

R

RR
netnet

αβ
βαχ

αβ

βα

σσ
χσ when determined from a single measurement2

Spillup:

net

net

R

R

_

_

β

α
αβχ ≡>−

and

                                                       
2 When the spillover is determined from a set of N measurements, the uncertainty assigned to the spillover in
ECLIPSE is determined from the empirical variance as described in Section 5 – Efficiency and Spillover
calibration without Mass Attenuation.



50

2

_

2

_

__











+










⋅= >−>−

net

R

net

R

RR
netnet

αβ
αβχ

αβ

αβ

σσ
χσ  when determined from a single measurement2

Derivation:

Rates:
The gross beta count rate includes contributions from the

* beta activity in the sample
* alpha to beta spillover
* beta background

as follows:

ββαααβββ χεε BAAR +⋅⋅+⋅= >−

Similarly, the gross alpha count rate can be written as

ααβββααα χεε BAAR +⋅⋅+⋅= >−

We now have two equations in two unknowns (αA and βA ), which can be rearranged as follows:

βββαααββ χεε BRAA −=⋅⋅+⋅ >−

αααβββαα χεε BRAA −=⋅⋅+⋅ >−

Or further rearranged as follows:

βββαααββ χεε BRAA −=⋅⋅+⋅ >−

αααααβββ εχε BRAA −=⋅+⋅⋅ >−

Solving these equations simultaneously yields:

( ) ( )[ ]
]1[ αββαβ

βαααββ
β χχε

χ

>−>−

>−

⋅−⋅
⋅−−−

=
BRBR

A

( ) ( )[ ]
]1[ βααβα

αβββαα
α χχε

χ

>−>−

>−

⋅−⋅
⋅−−−

=
BRBR

A

By analogy to the general equation for total activity, namely, the count rate divided by the efficiency:
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ε
R

A =

we may write the beta and alpha activities as follows:

β

β
β ε

correctedR
A _=

α

α
α ε

correctedR
A _=

in which

( ) ( )[ ]
]1[_

αββα

βαααββ
β χχ

χ

>−>−

>−

⋅−
⋅−−−

=
BRBR

R corrected

and

( ) ( )[ ]
]1[_

βααβ

αβββαα
α χχ

χ

>−>−

>−

⋅−
⋅−−−

=
BRBR

R corrected

Uncertainties
Defining:

α'R = correctedR _α

and

β'R = correctedR _β

we can write the uncertainties in the sample activities as

2

2

2

2
'

' α

ε

α
α ε

σσ
σ αα

α
+⋅=

R
A

R

A

2

2

2

2
'

' β

ε

β
β ε

σσ
σ ββ

β
+⋅=

R
A

R

A

where,

=αε the alpha counting efficiency

=βε the beta counting efficiency

=
αεσ the uncertainty in the alpha counting efficiency defined previously

=
βεσ the uncertainty in the beta counting efficiency defined previously

=
α

σ 'R the uncertainty in the corrected alpha count rate defined below

=
β

σ 'R the uncertainty in the corrected beta count rate defined below
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in which the uncertainties in the corrected count rates are given by (see derivation [including Method Blank
subtraction] in Appendix A.2):

[ ]22

2

2
' ]1[

1
ααα

σσ
χχ

σ
αββα

BRR +•











⋅−

=
>−>−

+ [ ]22

2

]1[ ββ
σσ

χχ
χ

αββα

αβ
BR +•












⋅− >−>−

>−

+ [ ]
22

1

'










⋅












•−

⋅−

>−>−>−

>− >−

αβ

χ

αββα

αββ

χ
σ

χχ
χ

αβR

+ [ ]
22

1

'










⋅












⋅−
⋅⋅

>−>−>−

>−>− >−

βα

χ

αββα

βααβα

χ
σ

χχ
χχ

βαR

[ ]22

2

2
' ]1[

1
βββ

σσ
χχ

σ
αββα

BRR +•











⋅−

=
>−>−

+ [ ]22

2

]1[ αα
σσ

χχ
χ

αββα

βα
BR +•












⋅− >−>−

>−

+ [ ]
22

1

'










⋅












•−

⋅−

>−>−>−

>− >−

βα

χ

αββα

βαα

χ
σ

χχ
χ

βαR

+ [ ]
22

1

'










⋅












⋅−
⋅⋅

>−>−>−

>−>− >−

αβ

χ

αββα

αββαβ

χ
σ

χχ
χχ

αβR
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A.2  With System Background and Method Blank Subtraction

Definitions:

=βA the beta activity in dpm.

=αA the alpha activity in dpm.

=βR the GROSS beta count rate in cpm.

=αR the GROSS alpha count rate in cpm.

=βε the beta efficiency (either simple or mass attenuated) as appropriate to the sample geometry

=αε the alpha efficiency (either simple or mass attenuated) as appropriate to the sample geometry

=βB the beta (system) background count rate in cpm.

=αB the alpha (system) background count rate in cpm.

=grossM _β the gross beta count rate of the Method Blank in cpm.

=grossM _α the gross alpha count rate of the Method Blank in cpm.

=>− βαχ the fractional spillover (spilldown) from alpha to beta.

=>− αβχ the fractional spillover (spillup) from beta to alpha.

Spilldown:

net

net

R

R

_

_

α

β
βαχ ≡>−

and

2

_

2

_

__











+










⋅= >−>−

net

R

net

R

RR
netnet

αβ
βαχ

αβ

βα

σσ
χσ when determined from a single measurement3

Spillup:

net

net

R

R

_

_

β

α
αβχ ≡>−

and

2

_

2

_

__











+










⋅= >−>−

net

R

net

R

RR
netnet

αβ
αβχ

αβ

αβ

σσ
χσ  when determined from a single measurement3

                                                       
3 When the spillover is determined from a set of N measurements, the uncertainty assigned to the spillover in
ECLIPSE is determined from the empirical variance as described in Section 5 – Efficiency and Spillover
calibration without Mass Attenuation
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Derivation:

Rates:
The gross beta count rate includes contributions from the

* beta activity in the sample
* beta activity from the Method
* beta background
* alpha to beta spillover

as follows:

βαααβββββ χεε >−⋅⋅+++⋅= ABMAR net_

which can be re-written as

βαααββββββ χεδδδε >−⋅⋅+⋅+⋅−⋅+⋅= ABBMAR gross 11_2 ][

where 1δ and 2δ can be interpreted as follows:

1δ = 0 means the system background may be neglected

1δ = 1 means the system background is to be taken into account

2δ = 0 means the Method Blank contribution may be neglected

2δ = 1 means the Method Blank contribution is to be taken into account

Similarly, the gross alpha count rate can be written as

αβββααααα χεε >−⋅⋅+++⋅= ABMAR net_

which can be re-written as

αβββαααααα χεδδδε >−⋅⋅+⋅+⋅−⋅+⋅= ABBMAR gross 11_2 ][

We now have two equations in two unknowns (αA and βA ), which can be rearranged as follows:

βββββαααββ δδδχεε BBMRAA gross ⋅−⋅−⋅−=⋅⋅+⋅ >− 11_2 ][

αααααβββαα δδδχεε BBMRAA gross ⋅−⋅−⋅−=⋅⋅+⋅ >− 11_2 ][

Or further rearranged as follows:

βββββαααββ δδδδχεε BBMRAA gross ⋅−⋅⋅+⋅−=⋅⋅+⋅ >− 112_2

αααααααβββ δδδδεχε BBMRAA gross ⋅−⋅⋅+⋅−=⋅+⋅⋅ >− 112_2

and finally stated as

)1( 21_2 δδδχεε ββββαααββ −⋅⋅−⋅−=⋅⋅+⋅ >− BMRAA gross

)1( 21_2 δδδεχε ααααααβββ −⋅−⋅−=⋅+⋅⋅ >− BMRAA gross
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Solving these equations simultaneously yields:

( ) ( )[ ]
]1[

)1()1( 21_221_2

αββαβ

βααααβββ
β χχε

χδδδδδδ

>−>−

>−

⋅−⋅
⋅−⋅−⋅−−−⋅⋅−⋅−

=
BMRBMR

A grossgross

( ) ( )[ ]
]1[

)1()1( 21_221_2

βααβα

αββββααα
α χχε

χδδδδδδ

>−>−

>−

⋅−⋅
⋅−⋅⋅−⋅−−−⋅−⋅−

=
BMRBMR

A grossgross

Since the total activity is given by the count rate divided by the efficiency:

ε
R

A =

we recognize that the spillover corrected count rates can be written as

( ) ( )[ ]
]1[

)1()1( 21_221_2
_

αββα

βααααβββ
β χχ

χδδδδδδ

>−>−

>−

⋅−
⋅−⋅−⋅−−−⋅⋅−⋅−

=
BMRBMR

R grossgross
corrected

( ) ( )[ ]
]1[

)1()1( 21_221_2
_

βααβ

αββββααα
α χχ

χδδδδδδ

>−>−

>−

⋅−
⋅−⋅⋅−⋅−−−⋅−⋅−

=
BMRBMR

R grossgross
corrected

so that the alpha and beta activities,αA and βA , are given by

α

α
α ε

correctedR
A _=

β

β
β ε

correctedR
A _=

Uncertainties
Defining:

α'R = correctedR _α

and

β'R = correctedR _β
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we can write the uncertainties in the sample activities as

2

2

2

2
'

' α

ε

α
α ε

σσ
σ αα

α
+⋅=

R
A

R

A

2

2

2

2
'

' β

ε

β
β ε

σσ
σ ββ

β
+⋅=

R
A

R

A

where,

=αε the alpha counting efficiency

=βε the beta counting efficiency

=
αεσ the uncertainty in the alpha counting efficiency defined previously

=
βεσ the uncertainty in the beta counting efficiency defined previously

=
α

σ 'R the uncertainty in the corrected alpha count rate defined below

=
β

σ 'R the uncertainty in the corrected beta count rate defined below

in which the uncertainties in the corrected count rates are given by

( ) ( ) ( )[ ]22
2

2
1

22
2

2

2

2
' 1

]1[

1
_ αααα

σδδσδσ
χχ

σ
αββα

BMRR gross
⋅−⋅+⋅+•












⋅−

=
>−>−

+ ( ) ( ) ( )[ ]22
2

2
1

22
2

2

2

1
]1[ _ βββ

σδδσδσ
χχ

χ

αββα

αβ
BMR gross

⋅−⋅+⋅+•











⋅− >−>−

>−

+ [ ]
22

1

'










⋅












•−

⋅−

>−>−>−

>− >−

αβ

χ

αββα

αββ

χ
σ

χχ
χ

αβ
R

+ [ ]
22

1

'










⋅












⋅−
⋅⋅

>−>−>−

>−>− >−

βα

χ

αββα

βααβα

χ
σ

χχ
χχ

βα
R
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( ) ( ) ( )[ ]22
2

2
1

22
2

2

2

2
' 1

]1[

1
_ ββββ

σδδσδσ
χχ

σ
αββα

BMRR gross
⋅−⋅+⋅+•












⋅−

=
>−>−

+ ( ) ( ) ( )[ ]22
2

2
1

22
2

2

2

1
]1[ _ ααα

σδδσδσ
χχ

χ

αββα

βα
BMR gross

⋅−⋅+⋅+•











⋅− >−>−

>−

+ [ ]
22

1

'










⋅












•−

⋅−

>−>−>−

>− >−

βα

χ

αββα

βαα

χ
σ

χχ
χ

βαR

+ [ ]
22

1

'










⋅












⋅−
⋅⋅

>−>−>−

>−>− >−

αβ

χ

αββα

αββαβ

χ
σ

χχ
χχ

αβR
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DERIVATION:
Noting our previous definitions:

α'R = correctedR _α

β'R = correctedR _β

we may write the corrected count rates as follows:

( ) ( )[ ]21_221_2 1[)1()1(' >−>−>− ⋅−•⋅−⋅−⋅−−−⋅⋅−⋅−= αββααββββαααα χχχδδδδδδ BMRBMRR grossgross

( ) ( )[ ]21_221_2 1[)1()1(' >−>−>− ⋅−•⋅−⋅−⋅−−−⋅⋅−⋅−= αββαβααααββββ χχχδδδδδδ BMRBMRR grossgross

Carrying out the derivation for the uncertainty in the corrected beta count rate, and noting that a similar
result applies to the alpha case, we proceed as follows:

2

2

2

2

_

2

2

2 '''
)'(

_ βββ
σσσ

β

β

β

β

β

β
β BM

gross
R B

R

M

R

R

R
dR

gross
⋅












∂
∂

+⋅











∂

∂
+⋅












∂
∂

=

+ 2

2

2

2

_

2

2
'''

_ ααα
σσσ

α

β

α

β

α

β
BM

gross
R B

R

M

R

R

R
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⋅







∂
∂

+⋅











∂

∂
+⋅








∂
∂

+ 2

2
'

βαχ
βα

β σ
χ >−

⋅











∂
∂

>−

R

+ 2

2
'

αβχ
αβ

β σ
χ >−

⋅











∂
∂

>−
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2

2

212

2

22

2

2

]1[

)1(

]1[]1[

1
)'(

_ βββ
σ

χχ
δδσ

χχ
δσ

χχ αββααββααββα
β BMR gross

dR ⋅











⋅−
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





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
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

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




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+ 2

2

212

2
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2

]1[
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σ

χχ
χδδ

σ
χχ

χδ
σ
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χ
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⋅











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⋅−⋅
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






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⋅
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






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


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−
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4+ [ ]
2

2

1

'
βαχ

αββα

α σ
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⋅







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
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•−

−
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αβχ

αββα
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χ
>−

⋅







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
⋅−

⋅

>−>−

>−R

Extract the common factors from lines 1 and 2:

( ) ( ) ( )[ ]22
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2
1
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2
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1
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_ βββ
σδδσδσ

χχ αββα
β BMR gross

dR ⋅−⋅−+⋅−+•











⋅−

=
>−>−

+ ( ) ( ) ( ) ( )[ ]22
2

2
1

22
2

22

2

11
]1[ _ ααα

σδδσδσ
χχ

χ

αββα

βα
BMR gross

⋅−⋅+⋅+⋅−•











⋅− >−>−

>−

+ [ ]
2

2

1

'
βαχ

αββα

α σ
χχ >−

⋅











•−

−

>−>−

R

+ [ ]
2

2

1

'
αβχ

αββα

βαβ σ
χχ

χ
>−

⋅











⋅−

⋅

>−>−

>−R

                                                       
4 See section A.3 - Differentiation, Rearrangement, and Simplification of Partial Derivative for details.
5 See section A.3 - Differentiation, Rearrangement, and Simplification of Partial Derivative for details.



60

Multiply lines 3 and 4 by 

2












>−

>−

βα

βα

χ
χ

and 

2












>−

>−

αβ

αβ

χ
χ

, respectively:

( ) ( ) ( )[ ]22
2

2
1

22
2

2

2

2 1
]1[

1
)'(

_ βββ
σδδσδσ

χχ αββα
β BMR gross

dR ⋅−⋅−+⋅−+•











⋅−

=
>−>−

+ ( ) ( ) ( ) ( )[ ]22
2

2
1

22
2

22

2

11
]1[ _ ααα

σδδσδσ
χχ

χ

αββα

βα
BMR gross

⋅−⋅+⋅+⋅−•











⋅− >−>−

>−

+ [ ]
22

1

'










⋅












•−

⋅−

>−>−>−

>− >−

βα

χ

αββα

βαα

χ
σ

χχ
χ

βαR

+ [ ]
22

1

'










⋅












⋅−
⋅⋅

>−>−>−

>−>− >−

αβ

χ

αββα

αββαβ

χ
σ

χχ
χχ

αβR

Noting that ( ) 11 2 =− (in line 2) and does not need to be stated explicitly, and deleting the unnecessary negative signs

from line 1 yields:

( ) ( ) ( )[ ]22
2

2
1

22
2

2

2

2 1
]1[

1
)'(

_ βββ
σδδσδσ

χχ αββα
β BMR gross

dR ⋅−⋅+⋅+•











⋅−

=
>−>−

+ ( ) ( ) ( )[ ]22
2

2
1

22
2

2

2

1
]1[ _ ααα

σδδσδσ
χχ

χ

αββα

βα
BMR gross

⋅−⋅+⋅+•











⋅− >−>−

>−

+ [ ]
22

1

'










⋅












•−

⋅−

>−>−>−

>− >−

βα

χ

αββα

βαα

χ
σ

χχ
χ

βαR

+ [ ]
22

1

'










⋅












⋅−
⋅⋅

>−>−>−

>−>− >−

αβ

χ

αββα

αββαβ

χ
σ

χχ
χχ

αβR
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A.3 Differentiation, Rearrangement, and Simplification of Partial Derivatives

Noting that α'R  and β'R  are given by

( ) ( )[ ]21_221_2 1[)1()1(' >−>−>− ⋅−•⋅−⋅−⋅−−−⋅⋅−⋅−= αββααββββαααα χχχδδδδδδ BMRBMRR grossgross

( ) ( )[ ]21_221_2 1[)1()1(' >−>−>− ⋅−•⋅−⋅−⋅−−−⋅⋅−⋅−= αββαβααααββββ χχχδδδδδδ BMRBMRR grossgross

we can simplify the notation with the following definitions:

( ))1( 21_2 δδδ βββ −⋅⋅−⋅−= BMRf gross

( ))1( 21_2 δδδ ααα −⋅−⋅−= BMRg gross

so that we may write

( )
( ) ( ) ( ) vwfg

fg
R •=⋅−•⋅−=

⋅−
⋅−

= −
>−>−>−

>−>−

>− 11
1

' αββααβ
αββα

αβ
α χχχ

χχ
χ

and

( )
( ) ( ) ( ) vugf

gf
R •=⋅−•⋅−=

⋅−
⋅−

= −
>−>−>−

>−>−

>− 11
1

' αββαβα
αββα

βα
β χχχ

χχ
χ

in which

( )αβχ >−⋅−= fgw

( )βαχ >−⋅−= gfu

( ) 11 −
>−>− ⋅−= αββα χχv

which simplify the required differentiations. Since the derivation of the uncertainty in the corrected count rate
is being carried out for the beta case, we proceed as follows:

( )βαχ >−⋅−= gfu

( )g
u −=

∂
∂

>− βαχ

0=
∂

∂

>− αβχ
u
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( ) 11 −
>−>− ⋅−= αββα χχv

( ) [ ] ( )αβαββα
βα

χχχ
χ >−

−
>−>−

>−

−⋅•−⋅−=
∂

∂ 211
v

[ ]21 αββα

αβ

χχ
χ

>−>−

>−

•−
=

( ) [ ] ( )βααββα
αβ

χχχ
χ >−

−
>−>−

>−

−⋅•−⋅−=
∂

∂ 211
v

[ ]21 αββα

βα

χχ
χ

>−>−

>−

•−
=

We may now write:

βαβαβα

β

χχχ >−>−>− ∂
∂⋅+

∂
∂⋅=

∂
∂ u

v
v

u
R'

( ) [ ] ( ) ( )ggf −⋅⋅−+
•−

⋅⋅−= −
>−>−

>−>−

>−
>−

1

2
1

1
αββα

αββα

αβ
βα χχ

χχ
χ

χ

( )
[ ]

( )
[ ]αββααββα

αββα

χχχχ
χχ

>−>−>−>−

>−>−

•−
−+

•−
⋅⋅−

=
11 2

ggf

( )
[ ]

( ) [ ]
[ ]22 1

1

1 αββα

αββα

αββα

αββα

χχ
χχ

χχ
χχ

>−>−

>−>−

>−>−

>−>−

•−
•−⋅−

+
•−

⋅⋅−
=

ggf

[ ]
( )

[ ]22 11 αββα

αββα

αββα

αββααβ

χχ
χχ

χχ
χχχ

>−>−

>−>−

>−>−

>−>−>−

•−
⋅⋅+−

+
•−

⋅⋅−⋅
=

gggf

[ ]21 αββα

αβ

χχ
χ

>−>−

>−

•−
−⋅

=
gf

6

[ ]αββα

α

χχ >−>− •−
−=

1

'R

                                                       

6 By substituting 
( )

( )αββα

αβ
α χχ

χ

>−>−

>−

⋅−
⋅−

=
1

'
fg

R  or more specifically 
( )

( )αββα

αβ
α χχ

χ

>−>−

>−

⋅−
−⋅

=−
1

'
gf

R
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and

αβαβαβ

β

χχχ >−>−>− ∂
∂⋅+

∂
∂⋅=

∂
∂ u

v
v

u
R'

( ) [ ] ( ) 01
1

1

2
⋅⋅−+

•−
⋅⋅−= −

>−>−
>−>−

>−
>− αββα

αββα

βα
βα χχ

χχ
χ

χgf

( )
[ ]21 αββα

βαβα

χχ
χχ

>−>−

>−>−

•−
⋅⋅−

=
gf

7

[ ]αββα

βαβ

χχ
χ

>−>−

>−

•−
⋅

=
1

'R

                                                                                                                                                                         

7 By substituting 
( )

( )αββα

βα
β χχ

χ

>−>−

>−

⋅−
⋅−

=
1

'
gf

R



Warranty

This warranty covers Canberra hardware and software shipped to customers within the United
States. For hardware and software shipped outside the United States, a similar warranty is pro-
vided by Canberra’s local representative.

DOMESTIC WARRANTY
Equipment manufactured by Canberra is warranted against defects in materials and work-
manship for one year from the date of shipment.

Canberra warrants proper operation of its software only when used with software and hard-
ware supplied by Canberra and warrants software media to be free from defects for 90 days
from the date of shipment.

If defects are discovered within 90 days of the time you receive your order, Canberra will pay
transportation costs. After the first 90 days, you will have to pay the transportation costs.

LIMITATIONS
Upon notification of defects in the software media or hardware, Canberra will repair or re-
place the defective items at its discretion.

THIS IS THE ONLY WARRANTY PROVIDED BY CANBERRA; THERE ARE NO OTHER
WARRANTIES, EXPRESSED OR IMPLIED. ALL WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR AN INTENDED PURPOSE ARE EXCLUDED. CANBERRA SHALL
HAVE NO LIABILITY FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
CAUSED BY FAILURE OF ANY EQUIPMENT OR SOFTWARE MANUFACTURED BY
CANBERRA.

EXCLUSIONS
This warranty does not cover equipment which has been modified without Canberra’s writ-
ten permission or which has been subjected to unusual physical or electrical stress as deter-
mined by Canberra’s Service Personnel.

Canberra is under no obligation to provide warranty service if adjustment or repair is re-
quired because of damage caused by other than ordinary use or if the equipment is serviced
or repaired, or if an attempt is made to service or repair the equipment, by other than
Canberra personnel without the prior approval of Canberra.

This warranty does not cover detector damage due to neutrons or heavy charged particles
or from physical abuse. Failure of beryllium, carbon composite, or polymer windows or of
windowless detectors caused by physical or chemical damage from the environment is not
covered by warranty.

Canberra is not responsible for damage sustained in transit. Examine shipments carefully
when you receive them for evidence of damage caused in transit. If damage is found, notify
Canberra and the carrier immediately. Keep all packages, materials and documents, includ-
ing your freight bill, invoice and packing list.

Revised 04/97



Software License

You have purchased the license to use Canberra software, not the software itself. Since title to
the software remains with Canberra, you may not sell or transfer the software. This license al-
lows you to use the software on only one computer at a time. You must get Canberra’s written
permission for any exception to this license.

BACKUP COPIES
Canberra’s software is protected by United States Copyright Law and by International Copy-
right Treaties. You have Canberra’s express permission to make one archival copy of this
software for backup protection. You may not copy Canberra software or any part of it for any
other purpose.


